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Edge-on boxy profiles in non-barred disc galaxies
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ABSTRACT
Boxy edge-on profiles can be accounted for not only in models of barred galaxies, but also
in models of normal (non-barred) galaxies. Thus the presence of a bar is not a sine qua non
condition for the appearance of this feature, as often assumed. We show that a ‘boxy’ or a
‘peanut’ structure in the central parts of a model is due to the presence of vertical resonances
at which stable families of periodic orbits bifurcate from the planar x1 family. The orbits of
these families reach in their projections on the equatorial plane a maximum distance from the
centre, beyond which they increase their mean radii by increasing only their deviations from the
equatorial plane. The resulting orbital profiles are ‘stair-type’ and constitute the backbone for
the observed boxy structures in edge-on views of N-body models and, we believe, in edge-on
views of disc galaxies. Since the existence of vertical resonances is independent of barred or
spiral perturbations in the disc, ‘boxy’ profiles may appear also in almost axisymmetric cases.
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1 I N T RO D U C T I O N

A significant number of edge-on disc galaxies display in their in-
ner regions a ‘boxy’ or ‘peanut’-shaped (hereafter b/p) structure. It
is believed (Lütticke, Dettmar & Pohlen 2000) that more than 45
per cent of disc galaxies have this kind of edge-on profile. Typical
examples are NGC 2424, NGC 6771, NGC 5746, IC 4767, Hickson
87a and the Milky Way. Several authors (Combes & Sanders 1981;
Pfenniger 1984, 1985; Combes et al. 1990; Pfenniger & Friedli
1991; Raha et al. 1991; Kuijken & Merrifield 1995; Bureau &
Freeman 1999) have related these profiles to the presence of a strong
bar. The tangential force in these bars is typically of the order of 25
per cent of the axisymmetric one (Combes & Sanders 1981).

Patsis & Grosbøl (1996) have shown that b/p orbital profiles
appear also in cases with a spiral instead of a bar perturbation.
Recently Athanassoula (in preparation) made a large number of
N-body simulations to follow the formation and evolution of bars
in isolated bar-unstable discs. Some of the models show in their
edge-on views a conspicuous b/p morphology, while their face-on
views show clearly that they are non-barred, and even in some cases
almost axisymmetric. It is clear that, at least in these cases, the b/p
morphology is due to the internal dynamics of the self-consistent
model and not to merging phenomena.

In this paper we will first describe a particularly illustrative sim-
ulation (Section 2). We then use orbital theory to understand the
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dynamics of b/p structures. We use a purely axisymmetric poten-
tial consisting of a disc and a halo component (Section 3), in order
to identify the orbits that constitute the backbone of the b/p struc-
ture (Section 4). The edge-on profiles are discussed in Section 5.
We discuss our results in Section 6, and we stress the fact that it
is the existence of vertical resonances per se and not the kind of
perturbation that gives rise to the appearance of b/p morphologies.

2 T H E N - B O DY M O D E L

Athanassoula’s N-body stellar model starts with initial conditions
created by the method of Hernquist (1993) and consists of an ex-
ponential disc with a sech2 vertical dependence, and a halo profile
proposed by Hernquist (1993). The detailed description of the disc
and halo initial density distributions can be found in Athanassoula
& Misiriotis (2002, equations 1 and 3).

In computer units the mass of the disc is taken as Md = 1, the halo
mass Mh = 5, the disc scalelength h = 1, the scaleheight of the disc
z0 = 0.2 and the halo scalelength γ = 5. The rest of the parameters
of the model in equations (1) and (3) of Athanassoula & Misiriotis
(2002) are as described in section 2 of the above mentioned paper. In
the simulation we present here we can assume the unit of mass to be
5×1010 M�, the length unit to be 3.5 kpc, the unit of velocity to be
248 km s−1 and the time unit to be 1.4 × 107 yr. The simulation has
200 000 particles in the disc and the halo is live and composed of 931
206 particles. The Toomre parameter Q is 1.8 (Toomre 1964). We
underline the lack of an explicit bulge component. The simulation
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was carried out on a Marseille Observatory GRAPE-5 system us-
ing a tree code similar to the one described by Athanassoula et al.
(1998). For more details we again refer the reader to Athanassoula
& Misiriotis (2002). A characteristic snapshot of the simulation af-
ter 8.4 Gyr from the start is given in Fig. 1. The upper panel gives
the circular velocity curve, which is rising and reaches approxi-
mately 0.68 (i.e. ≈ 170 km s−1) at 5 unit lengths (i.e. 17.5 kpc). The
dashed and dotted lines give the disc and the halo contributions,

Figure 1. Basic information on the stellar N-body simulation. From top to
bottom are depicted the circular velocity curve (the dashed line gives the disc
and the dotted the halo contribution), the isodensities of the disc particles
projected face-on, side-on and end-on, and finally the dot-plot of the particles
in the (x, y) plane. The side of the box for the face-on views is 10 units, i.e.
(with the adopted normalization) 35 kpc, and the height of the boxes for the
edge-on views is 3.33 units, i.e. ≈ 11.65 kpc. In the top panel we give the
name of the model and the time at which the snapshot was taken.

respectively. The second, third and fourth panels from the top give
the isodensities of the disc particles projected face-on, side-on and
end-on respectively. The bottom panel gives the dot-plot of the par-
ticles in the (x, y) plane. The side of the box for the face-on views
is 10 units (i.e. 35 kpc), so the height of the boxes for the edge-on
views is 3.33 units (i.e. ≈ 11.65 kpc). From the face-on view it is
evident that the model essentially does not have a bar. One can speak
about a weak overall oval distortion. Such a weak perturbation can
be detected in a large fraction of disc galaxies as an m = 2 compo-
nent of low amplitude. Nevertheless, both side-on and end-on views
are obviously boxy. The fact that the relative extent of the b/p feature
is about the same when projected on the horizontal axes reflects the
fact that the isocontours of the density in the face-on view are nearly
round.

3 T H E O R B I TA L M O D E L

For our orbital calculations we will use a general axisymmetric
potential consisting of a disc and a halo component. We adopt a
Miyamoto & Nagai (1975) disc potential, �D, which in cylindrical
coordinates has the form

�D(r, z) = − G MD√
r 2 + (a + √

z2 + b2)2
. (1)

In the above the parameter MD refers to the disc mass, a and b are
the horizontal and vertical scalelengths respectively, and r and z are
the cylindrical coordinates. The halo potential, �H, is given by

�H(r, z) = v2
H

2
ln

[
1 + 1

r 2
c

(r 2 + z2)

]
, (2)

where vH is the limiting circular velocity as r → ∞, and rc is the
core radius of the halo. The total potential used for the orbital cal-
culations is of the form � = �D + �H, and the adopted values of
the parameters are MD = 6 × 1010 M�, a = 3 kpc, b = 1.5 kpc, rc =
18 kpc and vH = 176.8 km s−1. The rotation curve (Fig. 2) repro-
duces fairly well that of the N-body model presented in the previous
section. One can clearly see that we have a model with a maximum
disc, as in the case of the N-body model. We remind the reader that

Figure 2. The rotation curve for the orbital model. It shows that the mass
distributions in the N-body and the orbital model are very close. The disc
contribution is indicated with a ‘d’ and that of the halo with an ‘h’.
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5 length units in the N-body model correspond to 17.5 kpc, and its
velocity unit is 248 km s−1.

4 O R B I T S A N D O R B I TA L B E H AV I O U R

The calculations have been done in Cartesian coordinates in a frame
of reference rotating around the z-axis. Thus the Hamiltonian gov-
erning the motion of the test particles is

H = 1/2(ẋ2 + ẏ2 + ż2) + �(x, y, z) − 1/2	2
p(x2 + y2), (3)

where 	p is the pattern speed. In the following we will denote by E j

the numerical value of H and adopt for the pattern speed the value
	p = 11.9 km s−1 kpc−1, which places corotation approximately at
14 kpc.

On the equatorial plane we can define the radial resonances be-
tween the epicyclic frequency and the angular velocity in the rotating
frame. In a 3D model we can also define vertical resonances, which
involve the vertical instead of the epicyclic frequency (for defini-
tions see e.g. Binney & Tremaine 1987). The first vertical resonance
in our model is the 3 : 1.

The main family in our model is the family of direct circular
periodic orbits on the z = 0 plane. These orbits, in the presence of
a spiral or barred perturbation, become ellipses, the well known x1
orbits (see e.g. Contopoulos & Grosbøl 1986, 1989). By analogy,
we will call this family x1 also in our axisymmetric model. In 2D
models the orbits of this family support the spiral or bar structure.
The stability of a periodic orbit is characterized by the behaviour
of two indices b1 and b2. In this study, the stability index b1 is
associated with the motion perpendicular to the equatorial plane,
while b2 is associated with radial perturbations. A family is stable
if both stability indices bi are −2 < bi < 2 (Hadjidemetriou 1975).
For more details on the stability of families of periodic orbits in
3D systems, the reader should refer to Contopoulos & Magnenat
(1985).

The most important families of periodic orbits for the dynamics
of a 3D disc galaxy are the central family and those bifurcated from
it at the vertical n : 1 resonances, where n is a small integer. At these
resonances, in the axisymmetric case, index b1 of family x1 becomes
tangent to the b = −2 axis. The bifurcated families come actually
in pairs1 and are in this case marginally stable because they always
have one of their stability indices on the b = −2 axis, while the other
remains always between −2 and 2. The variations of the stability
indices b1 and b2 of the x1 family, as well as those of the families
bifurcated at the vertical resonances 3 : 1, 4 : 1, 5 : 1, 6 : 1 and
7 : 1, are given in Fig. 3 as a function of the Jacobian E j . The verti-
cal black arrows indicate the points where index b1 of x1 becomes
tangent to the b = −2 axis at the vertical resonances. Horizontal ar-
rows point to the index of each bifurcating family which oscillates
between −2 and 2. They are always given close to the value of the
Hamiltonian at which the family bifurcates from the x1. The intro-
duction of a barred or spiral perturbation in the model brings into
the system a stable and an unstable family. For the stable one the
index which in the axisymmetric case was lying on the b = −2 axis
now becomes absolutely smaller than 2, so the family remains stable
over a large radial region (Patsis & Grosbøl 1996; Skokos, Patsis &
Athanassoula 2002a,b). The vertical white arrows indicate the tan-
gencies of the index b2 of the x1 family with the b = −2 axis at the
radial resonances.

1 The two families, which bifurcate at a tangency of a stability index with the
−2 axis in the axisymmetric case, have a stable and an unstable counterpart
in the non-axisymmetric case.

v 
4/

1

v 
6/

1
v 

7/
1

v 
5/

1

v 
3/

1

b

Ej

b1

b2

x1

Figure 3. The stability indices b1 and b2 of the central family x1 as a function
of E j , where E j is the value of the Hamiltonian. We give also the stability
indices of the families bifurcated at the vertical resonances 3 : 1, 4 : 1, 5 : 1,
6 : 1 and 7 : 1. One of their stability indices remains always equal to 2,
while the other one oscillates between −2 and 2.

5 T H E E D G E - O N P RO F I L E

Most stars in a galaxy will move along non-periodic orbits trapped
around stable periodic orbits (Poincaré 1992). Thus the topology of
the main families of periodic orbits will determine the basic fea-
tures in the galaxy. In the present case the main families are the
central family and the families bifurcated at the vertical resonances,
which exist as two branches symmetric with respect to the equatorial
(z = 0) plane. The response density profile is a weighted average of
the individual orbit contributions. As a weight, we use the disc den-
sity, ρD(r, z), where ρD is the density corresponding to the Miyamoto
disc calculated at the position (r, z), where r is the radius of the cir-
cular equatorial plane orbit which has the same E j as the orbit to
be weighted and z is the mean vertical distance of the orbit from
the equatorial plane. We have adopted the density of the luminous
(disc) component because the orbital profiles will have to reproduce
the light distribution, when we compare with real galaxies, or the
disc component of the N-body simulations.

Since our model is axisymmetric we can use arbitrarily any two
orthogonal axes on the equatorial plane in order to calculate periodic
orbits. This means that a periodic orbit rotated around the axis of
symmetry (z-axis) is also a periodic orbit of the system. The projec-
tions of these periodic orbits on a given axis will always be confined
within certain limits determined by a maximum length and a max-
imum height. We also note that the orbits of the two families that
bifurcate from the central family at the tangencies of the b1 index
with the b = −2 axis (Fig. 3), at a given E j value, are topologically
similar.

We have calculated at each energy (E j ) only one periodic orbit
per family along our x-axis. We started with the orbit that has the
same radius as the circular orbit at the E j where the family is bi-
furcated, and we followed the evolution of the family by finding
the orbits along the specific x-axis. These orbits have been used for
constructing the profiles in Fig. 4. Nevertheless, at each energy, one
can find, by rotation, an infinite number of representatives of the
same family, owing to the axisymmetric nature of the potential. It is
the same as viewing a given orbit from all possible viewing angles
by rotating our point of view around the z-axis, while staying always
on the equatorial plane.
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Figure 4. The (y, z) orbital profile: (a) the profile of the weighted orbits; (b)
the corresponding blurred image. The dashed box indicates the area that is
filled if all orbits at a given energy are considered.

In the (y, z) profile, created by (marginally) stable orbits of the
families considered in Fig. 3 (Fig. 4a), we observe a ‘stair-type’
structure with a central boxy region. This central region is formed
by the orbits of the two branches (symmetric with respect to the
equatorial plane) of the 3D family bifurcated at the vertical 3 : 1
resonance. By applying a smoothing filter to the image with the
weighted orbits we obtain a blurred profile, which, to a first approx-
imation, can be considered as the profile for the density distribution
of the model. This blurred profile is shown in Fig. 4(b). By consid-
ering all possible orbits at each energy, the area inside the rectangle
drawn with a dashed line in Fig. 4(b) will be filled. The (x, z) profile,
when considering all orbits, will be identical to the (y, z) one, as ex-
pected. In Fig. 4(b) we illustrate the resulting morphology by using
isocontours. Clearly the profiles of the orbital model (Fig. 4) and the
profiles of the N-body simulation (Fig. 1) have many similarities.
First of all we have a boxy structure confined within radii less than
2 length units of the N-body simulation, which correspond to 7 kpc.
This is practically the radius in Fig. 4 inside which we find the boxy
structure of the orbital model. Also the ‘stair-type’ edge-on profiles
of the weighted orbits are in good agreement with the outer parts of
the edge-on profiles of the N-body model.

6 D I S C U S S I O N

In the present study we propose a mechanism which can account for
boxy structures in the edge-on profiles of non-barred disc galaxies.
In the example that we present here, it is the presence of the vertical
3 : 1 resonance that introduces this structure into the system. It is,
however, not necessary to have a particular vertical resonance in
order to form a b/p profile. Furthermore, since radial and vertical
resonances can be defined even in an axisymmetric case, one can

find even in the axisymmetric model the bifurcating orbits that give
rise to these features. In fact, the only two necessary ingredients are

(i) the presence of a vertical n : 1 resonance, where n is a small
integer, so that a new family, bifurcating at this point, is introduced
in the system, and

(ii) that the bifurcated family should be stable over a sufficiently
large E j interval and should trap a sufficient number of regular orbits
around it.

If these two conditions are fulfilled, the ‘stair-type’ orbital profile
follows naturally, because the successive 3D families lower their
mean heights as the energy at which they are bifurcated from x1
increases. In addition, as energy increases, the successive orbits
of a bifurcating 3D family increase their mean spherical radius by
growing more in z than in their cylindrical radius and, beyond a
critical energy, by growing practically only in the vertical direction.
Since their cylindrical radius – or extent along the equatorial plane
– is thus limited, while their vertical extent is large, at least for large
values of the Jacobi energy EJ, they contribute to a boxy profile. As
we have shown here, it is not necessary to have a strong perturbation
in order for the vertical extent to be important. Thus the boxy feature
can be strong and clearly defined, even in a purely axisymmetric
model.

If we introduce a perturbation, the topology of the relevant or-
bital families remains the same and they will be stable rather than
marginally stable (Patsis & Grosbøl 1996; Skokos et al. 2002a,b).
There will, however, be one morphological difference, owing to
the fact that in the non-axisymmetric case the rotational symmetry
is broken. In this case it will not be possible to have orbits of any
desired azimuthal orientation, and as a result we will have a ‘peanut-
shaped’ profile, at least for a range of viewing angles, instead of a
boxy one.

Lack of a boxy structure in a model indicates one of the following
three possibilities: vertical resonances with small n : 1 do not exist in
the system; or the family bifurcated at the vertical resonance with the
lowest E j value has unstable parts that are too large; or, for reasons
that could be linked to the formation history of the galaxy, too few
stars are on orbits trapped around the stable periodic n : 1 orbits.
The conditions needed for building a b/p profile may be favoured
by the presence of the bar, but the bar per se is not the reason that
edge-on disc galaxies have boxy profiles. Of course our mechanism
relies on the existence of a pattern speed that does not vary much
with time. In other words it implicitly assumes the existence, or
past existence, of some non-axisymmetric feature, albeit of perhaps
infinitesimal amplitude.

Bureau & Freeman (1999) and Athanassoula & Bureau (1999)
developed diagnostics to detect the presence and orientation of a
bar in edge-on disc galaxies. They detected in most of the peanut-
shaped edge-on galaxies in Bureau & Freeman (1999) the signature
of a ‘x2-flow’ in the position–velocity diagrams. This was taken as
the manifestation of the presence of a bar. However, in a few cases,
this feature was absent. Athanassoula & Bureau attributed the lack of
such a feature either to a lack of an inner Lindblad resonance (ILR)
or to a lack of emitting gas around the ILR region. The present study
adds a third possibility, namely that the galaxy is not barred.

AC K N OW L E D G M E N T S

We acknowledge fruitful discussions with and very useful comments
by Professor G. Contopoulos. We also thank the anonymous referee
for comments which improved the paper. This work has been sup-
ported by the Research Committee of the Academy of Athens. EA

C© 2002 RAS, MNRAS 335, 1049–1053



Non-barred boxy profiles 1053

also thanks the IGRAP, the Region PACA, the INSU/CNRS and the
University of Aix-Marseille I for funds to develop the GRAPE com-
puting facilities used for the simulations discussed in this paper. PAP
and ChS thank the Laboratoire d’Astrophysique de Marseille, for
an invitation. ChS was supported by the ‘Karatheodory’ fellowship
No. 2794 of the University of Patras.

R E F E R E N C E S

Athanassoula E., Bureau M., 1999, ApJ, 522, 699
Athanassoula E., Misiriotis A., 2002, MNRAS, 330, 35
Athanassoula E., Bosma A., Lambert J.-C., Makino J., 1998, MNRAS, 293,

369
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press,

Princeton, NJ
Bureau M., Athanassoula E., 1999, ApJ, 522, 686
Bureau M., Freeman K. C., 1999, AJ, 118, 126
Combes F., Sanders R. H., 1981, A&A, 96, 164
Combes F., Debbasch F., Friedli D., Pfenniger D., 1990, A&A, 233, 82

Contopoulos G., Grosbøl P., 1986, A&A, 155, 11
Contopoulos G., Grosbøl P., 1989, A&AR, 1, 261
Contopoulos G., Magnenat P., 1985, Celest. Mech., 37, 387
Hadjidemetriou J., 1975, Celest. Mech., 12, 255
Hernquist L., 1993, ApJS, 86, 389
Kuijken K., Merrifield M. R., 1995, ApJ, 443, L13
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